
EE 435

Lecture 29

Data Converters

• Spectral Performance

• Quantization Noise

1

- Windowing



INL Often Not a Good Measure of Linearity
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Four identical INL with dramatically different linearity
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Why is this a Key Theorem? 
T

TS

• DFT requires dramatically less computation time than the integrals for 

obtaining  Fourier Series coefficients

• Can easily determine the sampling rate (often termed the Nyquist rate)  to 

satisfy the band limited part of the theorem 
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THEOREM:  Consider a periodic signal with period T=1/f and sampling 

period TS=1/fS.  If NP is an integer and x(t) is band limited to fMAX, then

and                            for all k not defined above

where                          is the DFT of the sequence

N=number of samples,  NP is the number of periods, and 
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Distortion Analysis

How are spectral components determined?
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By FFT (special computational method for obtaining DFT)

(with some restrictions that will be discussed)
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Integral is very time consuming, particularly if large number of components are required

.•   • •   •  •   Review from last lecture .•   • •   •  •



Distortion Analysis
T

TS

k

( )k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have
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Considerations for Spectral 

Characterization

•Tool Validation

•DFT Length and NP

•Importance of Satisfying Hypothesis

•Windowing

6

.•   • •   •  •   Review from last lecture .•   • •   •  •



Considerations for Spectral Characterization
DFT Length and NP

• DFT Length and NP  do not affect the computational noise floor

• Although not shown here yet, DFT length does reduce the quantization

noise floor coefficients but not total quantization noise

nDFT2
2

QUANT k
k=1

E A 

If the Ak’s are constant and equal DFTn /2
QUANT kE A 2

If we assume EQUANT is fixed and no 

signal present

Solving for Ak, obtain

DFT

QUANT
k n /2

E
A

2


If input is full-scale sinusoid with only amplitude quantization with n-bit res, 

112 3 2
QUANTE

+
 =

•

LSB REF
n

X X

(this expression is actually independent of input waveform)
7

(these are now the DFT coefficients due to quantization noise, not computation noise)

.•   • •   •  •   Review from last lecture .•   • •   •  •



Considerations for Spectral Characterization
DFT Length

DFT

REF
k n /2n+1

X
A

3•2 2


112 3 2
QUANTE

+
 =

•

LSB REF
n

X X

Substituting for EQUANT, obtain

This value for Ak thus decreases with the length of the DFT sampline window

(Note Ak>> computational noise floor (-310dB for Matlab) for all practical n, nDFT)

Example:  if n=16, nDFT=12 (4096 pt transform),  and XREF=1V,

then Ak=6.9E-8V  (-143dB), 
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Considerations for Spectral 

Characterization

•Tool Validation

•DFT Length and NP

•Importance of Satisfying Hypothesis

•Windowing
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Spectral Response with Non-coherent Sampling

(zoomed in around fundamental)

.•   • •   •  •   Review from last lecture .•   • •   •  •



Considerations for Spectral 

Characterization

• Tool Validation

• DFT Length and NP

• Importance of Satisfying Hypothesis
- NP is an integer

- Band-limited excitation

• Windowing



DFT Examples

Recall the theorem that provided for the relationship between the 

DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

2.
P

SIGNAL

N
f

f2
N max



Example

If fSIG=50Hz

and  NP=20  N=512

max2
P

SIGNAL

f
N N

f
 fmax< 640Hz

max2
P

SIGNAL

f
N N

f
 (Not meeting Nyquist sampling rate 

requirement)



Example

)sin(.)sin(.)sin( t1450t250tVIN ++=

If fSIG=50Hz but an additional input at 700Hz is present 

Consider  NP=20  N=512

SIGπf2ω =

Recall      20log10(0.5)=-6.0205999

(i.e. the component at 700 Hz which violates the band limit 

requirement – Nyquist rate for the  700 Hz input is 1.4KHz)

max2
P

SIGNAL

f
N N

f


(Not meeting Nyquist sampling rate 

requirement)

S
P

NT
N 1.280

T
SAMP SIGNAL SAMP

P

N
f f f KHz

N
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Effects of High-Frequency Spectral Components



Effects of High-Frequency Spectral Components



Effects of High-Frequency Spectral Components

640



Effects of High-Frequency Spectral Components

Columns 1 through 7 

-296.9507 -311.9710 -302.4715 -302.1545 -310.8392 -304.5465 -293.9310

Columns 8 through 14 

-299.0778 -292.3045 -297.0529 -301.4639 -297.3332 -309.6947 -308.2308

Columns 15 through 21 

-297.3710 -316.5113 -293.5661 -294.4045 -293.6881 -292.6872   -0.0000

Columns 22 through 28 

-301.6889 -288.4812 -292.5621 -292.5853 -294.1383 -296.4034 -289.5216

Columns 29 through 35 

-285.9204 -292.1676 -289.0633 -292.1318 -290.6342 -293.2538 -296.8434

fhigh=14fo



Effects of High-Frequency Spectral Components

Columns 36 through 42 

-301.7087 -307.2119 -295.1726 -303.4403 -301.6427   -6.0206 -295.3018

Columns 43 through 49 

-298.9215 -309.4829 -306.7363 -293.0808 -300.0882 -306.5530 -302.9962

Columns 50 through 56 

-318.4706 -294.8956 -304.4663 -300.8919 -298.7732 -301.2474 -293.3188

fhigh=14fo



Effects of High-Frequency Spectral Components

alias samplef f f= −

Columns 225 through 231 

-296.8883 -292.8175 -295.8882 -286.7494 -300.3477 -284.4253 -282.7639

Columns 232 through 238 

-273.9840   -6.0206 -274.2295 -284.4608 -283.5228 -297.6724 -291.7545

Columns 239 through 245 

-299.1299 -305.8361 -295.1772 -295.1670 -300.2698 -293.6406 -304.2886

Columns 246 through 252 

-302.0233 -306.6100 -297.7242 -305.4513 -300.4242 -298.1795 -299.0956

Aliased components at

25.6 14 11.6

1 1 20 11.6 233

alias sig sig sig

alias
p

sig

f f f f

f
thus position insequence N

f

= − =
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Effects of High-Frequency Spectral Components



Effects of High-Frequency Spectral Components



Effects of High-Frequency Spectral Components

(zoomed in around fundamental)



Effects of High-Frequency Spectral Components



Effects of High-Frequency Spectral Components



Observations

• Aliasing will occur if the band-limited part of the 
hypothesis for using the DFT is not satisfied

• Modest aliasing will cause high frequency 
components that may or may not appear at a 
harmonic frequency

• More egregious aliasing can introduce 
components near or on top of fundamental and 
lower-order harmonics

• Important to avoid aliasing if the DFT is used for 
spectral characterization



Review Questions

Q1:  How many DFT terms are there if the sample window is of length 4096?

Q2:  When the magnitude of the DFT coefficients are plotted, the horizontal axis 

is an index axis (i.e. dimensionless) but often the index terms are labeled as 

frequency terms.  If the sampling frequency is fs and N samples are taken, what is 

the frequency of the first DFT term?  What is the frequency of the 2nd DFT term?  

Q3:  If samples of the time-domain signal are made over exactly 31 periods, 

which index term corresponds to the fundamental?   To the second harmonic? 

Q4:  What is the difference between the DFT and the FFT?  

Q5:  True or False:   The DFT terms are real numbers.

Q6:  True or False:  The magnitude of the DFT terms are symmetric around 

index number N/2.

A:  4096

A:  0 Hz A:  fs/N

A:  32nd term A:  63rd term

A:  FFT is a computationally efficient method of computing the DFT

A:  False       We are, however, often interested most in the magnitude of 

the DFT terms and these are real

A:  Yes



Considerations for Spectral 

Characterization

• Tool Validation

• DFT Length and NP

• Importance of Satisfying Hypothesis
- NP is an integer

- Band-limited excitation

• Windowing



Considerations for Spectral 

Characterization

• Tool Validation

• DFT Length and NP

• Importance of Satisfying Hypothesis
- NP is an integer

- Band-limited excitation

• Windowing



Are there any strategies to address the 

problem of requiring precisely an integral 

number of periods to use the FFT?

Windowing is sometimes used

Windowing is sometimes misused



Windowing
Windowing is the weighting of the time 

domain function to maintain continuity at 

the end points of the sample window

Well-studied window functions:

• Rectangular (also with appended zeros)

• Triangular

• Hamming

• Hanning

• Blackman



Input Waveform
Recall



Input Waveform

Recall



Rectangular Window

Sometimes termed a boxcar window

Uniform weight

Can append zeros

Without appending zeros equivalent to no window



Rectangular Window

)sin(.)sin( t250tVIN +=

Assume fSIG=50Hz

Consider  NP=20.1  N=512

SIGπf2ω =



Rectangular Window



(zoomed in around fundamental)

Spectral Response with Non-coherent sampling



Rectangular Window (with appended zeros)



Rectangular Window

Columns 1 through 7 

-48.8444  -48.7188  -48.3569  -47.7963  -47.0835  -46.2613  -45.3620

Columns 8 through 14 

-44.4065  -43.4052  -42.3602  -41.2670  -40.1146  -38.8851  -37.5520

Columns 15 through 21 

-36.0756  -34.3940  -32.4043  -29.9158  -26.5087  -20.9064   -0.1352

Columns 22 through 28 

-19.3242  -25.9731  -29.8688  -32.7423  -35.1205  -37.2500  -39.2831

Columns 29 through 35 

-41.3375  -43.5152  -45.8626  -48.0945  -48.8606  -46.9417  -43.7344



Rectangular Window

Columns 1 through 7 

-48.8444  -48.7188  -48.3569  -47.7963  -47.0835  -46.2613  -45.3620

Columns 8 through 14 

-44.4065  -43.4052  -42.3602  -41.2670  -40.1146  -38.8851  -37.5520

Columns 15 through 21 

-36.0756  -34.3940  -32.4043  -29.9158  -26.5087  -20.9064   -0.1352

Columns 22 through 28 

-19.3242  -25.9731  -29.8688  -32.7423  -35.1205  -37.2500  -39.2831

Columns 29 through 35 

-41.3375  -43.5152  -45.8626  -48.0945  -48.8606  -46.9417  -43.7344

Energy spread over several frequency components



Triangular Window



Triangular Window



(zoomed in around fundamental)

Spectral Response with Non-Coherent Sampling and Windowing



Triangular Window



Triangular Window

Columns 1 through 7 

-100.8530  -72.0528  -99.1401  -68.0110  -95.8741  -63.9944  -92.5170

Columns 8 through 14 

-60.3216  -88.7000  -56.7717  -85.8679  -52.8256  -82.1689  -48.3134

Columns 15 through 21 

-77.0594  -42.4247  -70.3128  -33.7318  -58.8762  -15.7333   -6.0918

Columns 22 through 28 

-12.2463  -57.0917  -32.5077  -68.9492  -41.3993  -74.6234  -46.8037

Columns 29 through 35 

-77.0686  -50.1054  -77.0980  -51.5317  -75.1218  -50.8522  -71.2410

Note:  Magnitude of the fundamental has been reduced but so 

have the skirting effects have also been reduced.

Note:  Windowing has reduced energy in the signal but also made 

transition at end-point of sampling window continuous when 

creating a periodic waveform



Hamming Window

Note:  Magnitude of the fundamental has been reduced but  less than for 

triangular window.

Note:  Windowing has made transition at end-point of sampling window 

continuous when creating a periodic waveform



Hamming Window



(zoomed in around fundamental)

Spectral Response with Non-Coherent Sampling and Windowing



Comparison with Rectangular Window

Note:  Vertical axis are different



Hamming Window

Columns 1 through 7 

-70.8278  -70.6955  -70.3703  -69.8555  -69.1502  -68.3632  -67.5133

Columns 8 through 14 

-66.5945  -65.6321  -64.6276  -63.6635  -62.6204  -61.5590  -60.4199

Columns 15 through 21 

-59.3204  -58.3582  -57.8735  -60.2994  -52.6273  -14.4702   -5.4343

Columns 22 through 28 

-11.2659  -45.2190  -67.9926  -60.1662  -60.1710  -61.2796  -62.7277

Columns 29 through 35 

-64.3642  -66.2048  -68.2460  -70.1835  -71.1529  -70.2800  -68.1145



Hanning Window



Hanning Window



(zoomed in around fundamental)

Spectral Response with Non-Coherent Sampling and Windowing



Comparison with Rectangular Window

Note:  Vertical axis are different



Hanning Window

Columns 1 through 7 

-107.3123 -106.7939 -105.3421 -101.9488  -98.3043  -96.6522  -93.0343

Columns 8 through 14 

-92.4519  -90.4372  -87.7977  -84.9554  -81.8956  -79.3520  -75.8944

Columns 15 through 21 

-72.0479  -67.4602  -61.7543  -54.2042  -42.9597  -13.4511   -6.0601

Columns 22 through 28 

-10.8267  -40.4480  -53.3906  -61.8561  -68.3601  -73.9966  -79.0757

Columns 29 through 35 

-84.4318  -92.7280  -99.4046  -89.0799  -83.4211  -78.5955  -73.9788



Comparison of 4 windows



Comparison of 4 windows



But windows can make things worse too!

Consider situation where we really do have coherent sampling and a 

window is applied

fsig1=50Hz

fsig2=100Hz

N=512

Np=20



Comparison of 4 windows when sampling 

hypothesis are satisfied



Comparison of 4 windows



But windows can make things worse too!

Consider situation where we really do have coherent sampling and a 

window is applied

fsig1=50Hz

fsig2=100Hz

N=512

Np=20

And we do not really know how much worse thing can be!

Be careful about interpreting results obtained by using 

windowing to mitigate the non-coherent sampling problem ! 

Remember the hypothesis of the theorem relating the DFT, which 

is easy to calculate, to the Fourier Series coefficients!



Preliminary Observations about Windows

• Provide separation of spectral components

• Energy can be accumulated around 

spectral components

• Simple to apply

• Some windows work much better than 

others

But – windows do not provide dramatic 

improvement and can significantly degrade 

performance if sampling hypothesis are met



Issues of Concern for Spectral Analysis

An integral number of periods is critical for spectral analysis

Not easy to satisfy this requirement in the laboratory

Windowing can help but can hurt as well

Out of band energy can be reflected back into bands of interest

Characterization of CAD tool environment is essential

Spectral Characterization of high-resolution data converters 

requires particularly critical consideration to avoid simulations or 

measurements from masking real performance



Summary of time and amplitude 

quantization assessment

Time and amplitude quantization do not 

introduce harmonic distortion

Time and amplitude quantization do 

increase the noise floor



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Quantization Noise

• DACs and ADCs generally quantize both 

amplitude and time

• If converting a continuous-time signal 

(ADC) or generating a desired continuous-

time signal (DAC) these quantizations

cause a difference in time and amplitude 

from the desired signal – this difference is 

termed “noise”.

• First a few comments about Noise



What is Noise in a data converter?

Types of noise:

• Random noise due to movement of electrons in electronic circuits

(resistors and active devices) – highly dependent upon temperature    

thus often termed “thermal” noise

• Interfering signals generated by other systems

• Interfering signals generated by a circuit or system itself

• Error signals associated with imperfect signal processing algorithms 

or circuits

Noise is a term applied to some nonideal effects of a data converter 

Precise definition of noise is probably not useful

Some differences in views about what nonideal characteristics of a data 

converter should be referred to as noise

– Quantization noise

– Sample Jitter

– Harmonic Distortion



192

Noise is any undesired signal (typically random) that adds to the desired 

signal, causing it to deviate from its original value.1

Noise

1Definitiion from “Fundamentals of Precision ADC Noise Analysis”, Bryan Lizon, Texas 

Instruments, Sept. 2020

1 from Bryan Lizon
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Noise

file:///C:/Users/rlgeiger/Documents/ABIN/Research/Noise/slyy192.pdf

by Bryan Lizon

Good reference on noise in ADCs 



Stay Safe and Stay Healthy !



End of Lecture 29


